

NexusDB Security Pack
An overview of the NexusDB Security Pack and

comparison of the various encryption engine

provided within

NexusDB Pty Ltd NexusDB Security Pack Introduction Page 2 of 17

Table of Contents
Overview .. 3

Availability .. 3

Technical comparison .. 4

Performance Comparison .. 6

Practical and Certification Comparison ... 7

Usage .. 12

Key management ... 13

Scenario Usage Examples .. 16

Example 1 - Not completely trusted database device user ... 16

Example 2 - Not completely trusted backup device .. 16

Example 3 - Stolen or misplaced server side database device .. 16

Example 4 - Not completely trusted database device user ... 16

Example 5 - Stolen or misplaced client side database device ... 17

Example 6 - Customers who are unable to let things alone .. 17

NexusDB Pty Ltd NexusDB Security Pack Introduction Page 3 of 17

Overview

The NexusDB Security Pack is a new add-on for NexusDB which provides a number of highly secure industry

standard data encryption engines. These engines are designed, implemented and documented under

contract by highly regarded data security consultant Henrick Hellström of StreamSec HB

(http://www.streamsec.com), a Swedish company specializing in the development of highly secure data

encryption.

The Security Pack is available in three versions: Standard AesCcm, Standard XtsAes, and Professional. The

Security Pack is designed to work as an extension engine in NexusDB, thus making integration and

maintenance of the security pack into existing systems as simple as possible. The packs are delivered as

Developer Edition installers with full source code, and the installers will download server and Enterprise

Manager binaries with the engines compiled in.

 Standard AesCcm Pack comes with 128- and 256-bit versions of the AesCcm encryption engine. This

encryption engine is suitable for

Feature matrix:

Engine Standard AesCcm Standard XtsAes Professional
AES CCM 128 X X
AES CCM 128 (assembler optimized) X
XTS AES 128 X X
AES GCM 256 X
AES CCM 256 X X
XCB AES 256 X
XCB AES 256 X X
SHACAL CBC HMAC 256 X
AES CBC MAC 128 X

From a database specific point of view a simple restructure of the table with the Encryption engine

identifier set to one of the new engines will secure the database.

http://www.streamsec.com/

NexusDB Pty Ltd NexusDB Security Pack Introduction Page 4 of 17

Technical comparison
Sc

h
e

m
e

Id
e

n
ti

fi
e

r

Ti
e

r

K
e

y
si

ze

C
o

n
fi

d
e

n
ti

al
it

y
m

o
d

e

In
te

gr
it

y

m
o

d
e

R
an

d
o

m

ge
n

e
ra

to
r

P
as

sw
o

rd

p
ro

ce
ss

in
g

K
e

y
w

ra
p

Su
p

p
o

rt
s

ta
b

le

ch
e

ck
su

m

O
ve

rh
e

ad

Blowfish RC4

n
x1

xD
ef

au
lt

n
xd

b

1
2

8
 b

it
s

C
B

C
*

 XOR checksum with
ECB and RC4
whitening

non standard
Blowfish and RC4 key
schedule

Blowfish RC4 No

 48 bytes per table

 16 bytes per block

AES CCM 128

n
xs

A
e

sC
cm

1
2

8

ST
D

1
2

8
 b

it
s

C
TR

CBC MAC ANSI X9.31 AES
PKCS#5 PBKDF-2 with
AES based PRF from NIST
SP800-90

AES CCM 128 No

 64 bytes per table

 32 bytes per block

XTS AES 128

n
xs

X
ts

A
e

s1
2

8

ST
D

1
2

8
 b

it
s

X
EX

 none -
128 bit granularity

ANSI X9.31 AES
PKCS#5 PBKDF-2 with
AES based PRF from NIST
SP800-90

AES CBC and AES
CBC MAC with
independent keys

No

 96 bytes per table

 0 bytes per block

AES GCM 256

n
xs

A
e

sG
cm

2
5

6

P
R

O

2
5

6
 b

it
s

G
C

TR

GHASH NIST SP800−90 AES CTR
PKCS#5 PBKDF-2 with
HMAC-SHA256

AES GCM 256 No

 80 bytes per table

 32 bytes per block

NexusDB Pty Ltd NexusDB Security Pack Introduction Page 5 of 17

AES CCM 256

n
xs

A
e

sC
cm

2
5

6

P
R

O

2
5

6
 b

it
s

C
TR

CBC MAC NIST SP800−90 AES CTR
PKCS#5 PBKDF-2 with
HMAC-SHA256

AES CCM 256 No

 80 bytes per table

 32 bytes per block

XCB AES 256

n
xs

X
cb

A
e

s2
5

6

P
R

O

2
5

6
 b

it
s

X
C

B
 none -

full table block
granularity

NIST SP800−90 AES CTR
PKCS#5 PBKDF-2 with
HMAC-SHA256

AES CBC and AES
CBC MAC with
independent keys

No

 80 bytes per table

 0 bytes per block

XCB AES 256

n
xs

X
cb

A
e

s2
5

6
R

ed

P
R

O

2
5

6
 b

it
s

X
C

B

Redundancy check NIST SP800−90 AES CTR
PKCS#5 PBKDF-2 with
HMAC-SHA256

AES CBC and AES
CBC MAC with
independent keys

Yes

 96 bytes per table

 32 bytes per block

SHACAL CBC HM
AC 256

n
xs

Sh
ac

al
C

b
c

H
m

ac
 P
R

O

2
5

6
 b

it
s

C
B

C

HMAC SHA 256 NIST SP800−90 AES CTR
PKCS#5 PBKDF-2 with
HMAC-SHA256

SHACAL CBC HMA
C 256

Yes

 160 bytes per table

 64 bytes per block

AES CBC MAC 12
8

n
xs

A
u

th
A

es
C

b
c

M
ac

1
2

8

P
R

O

1
2

8
 b

it
s

n
o

n
e

AES CBC MAC 128 NIST SP800−90 AES CTR
PKCS#5 PBKDF-2 with
HMAC-SHA256

SHACAL CBC HMA
C 256

No

 64 bytes per table

 16 bytes per block

* with RC4 whitening

NexusDB Pty Ltd NexusDB Security Pack Introduction Page 6 of 17

Performance Comparison

Scheme Identfier Encrypt 4kb blocks Encrypt 64kb blocks

Blowfish RC4 nx1xDefault 23 MB/s 25 MB/s

AES CCM 128 (Std) nxsAesCcm128 9.9 MB/s 10 MB/s

AES CCM 128 (Pro) nxsAesCcm128 62 MB/s 65 MB/s

XTS AES 128 nxsXtsAes128 20 MB/s 20 MB/s

AES GCM 256 nxsAesGcm256 34 MB/s 35 MB/s

AES CCM 256 nxsAesCcm256 50 MB/s 52 MB/s

XCB AES 256 nxsXcbAes256 22 MB/s 22 MB/s

XCB AES 256 nxsXcbAes256Red 21 MB/s 22 MB/s

SHACAL CBC HMAC 256 nxsShacalCbcHmac256 36 MB/s 39 MB/s

AES CBC MAC 128 nxsAuthAesCbcMac128 115 MB/s 117 MB/s

NexusDB Pty Ltd NexusDB Security Pack Introduction Page 7 of 17

Practical and Certification Comparison

Scheme System requirements Use for... Certified for... DO NOT use for... Notes

All The adversary MUST NOT have
access to the nxserver.exe
process while running.

 Disable virtual memory and the
page file for the computer where
nxserver.exe runs.

 Do not hibernate.

 Use RAM memory modules that
are cleared on power failure. Use
hardware with counter measures
(or other equivalent
means) against cold boot attacks.

 Client users must manage table
passwords securely.

 Protecting data server side. Do not use for
DRM.

 Do not use for
preventing the
software user from
modifying data
provided by the
manufacturer and
used by the
software.

 All encryption engines are to
different extent vulnerable to
traffic analysis, where the
adversary observes disk
activity and correlates it to
application events.

 All encryption engines are
vulnerable to replay attacks,
where the adversary rolls
back an entire table block to
an older version of that table
block.

Blowfish RC4 Due to potential bugs in BIOS and
HAL that affect
QueryPerformanceCounter on
multi core CPU systems or multi
CPU systems, this encryption
engine should only be used on
older single core CPU systems.

Generic low end security for small tables.

 Up to 128 bit confidentiality for small
read only tables that were filled with
data relatively quickly on a single
run.

 Lower confidentiality and no
guaranteed authentication in all
other cases, due to potential IV
collisions. (Partial information might
leak.)

 Up to 64 bit integrity and
authentication.

Not certified Do not use in any
scenario where
128 bit
confidentiality,
integrity and
authentication is
required.

 Do not use if
nxserver.exe is
running on modern
hardware.

AES CCM 128

Standard

 nxserver.exe must always
work against the latest version of
each table file. Live backups from
older versions of a table file are
permitted. Some integrity of the
physical storage has to be

A nxserver.exe running on a machine
with a RAID drive or one that might take
file system backups of the table
files (although not use them for
restoration).

Live backup - write
once

 Do not use if
nxserver.exe is
running in a virtual
machine, in a
cloud, or in any
other scenario

 Only 20 bit confidentiality if
the adversary is able to roll
back the physical table files
without detection. There is a
0.5 risk of complete loss of
confidentiality of at least

NexusDB Pty Ltd NexusDB Security Pack Introduction Page 8 of 17

provided using external means. 128 bit confidentiality in case of a
sudden detectable security breach
(e.g. theft of hardware), even if the
attacker at the same time gets
access to multiple historical versions
of the same table files (e.g. file
system backups).

 128 bit authentication of stored data
when recovering from a sudden
detected security breach. (I.e. ability
to detect if an already detected
intruder planted unauthentic table
blocks in the table files.)

 128 bit integrity of stored data when
recovering from a sudden detected
security breach, provided that a nxdb
live backup is used for restoration. If
file system backups are used the
intruder might substitute different
historical versions of the same table
blocks without detection.

where backup and
restoration might
happen
transparently.

two table blocks after
2

20
table block re-encodings.

 Only certified for write-once
backups, but might be used
for other purposes if
extra care is taken.

XTS AES 128

Standard

 Any security breach must be
detected immediately using
external means. Use other
software for malware detection
and for preventing intrusion.

 Live backups must be stored
securely.

A nxserver.exe running on a PC or laptop,
ideally with a file system without caching,
such as FAT32.

 128 bit confidentiality in case of a
sudden detectable security breach
(e.g. theft of hardware), provided
that no file system backups are
made.

Disk encryption
for confientiality
in case of a
sudden detectable
security breach
(e.g. theft of
hardware)

 Do not use if the
adversary might
get access to
multiple historical
versions of the
same table file.

 Do not use if there
is any chance that
an adversary might
modify a table file
the nxserver.exe
has to use.

 Limited confidentiality if the
adversary gets access to
multiple historical versions of
the same table files. Partial
information might leak.

 No integrity check or
authentication.

AES GCM 256

Professional

 nxserver.exe must always
work against the latest version of
each table file. Live backups from
older versions of a table file are
permitted. Some integrity of the

A nxserver.exe running on a machine
with a RAID drive or one that might take
file system backups of the table
files (although not use them for

Live backup - write
once

 Do not use if
nxserver.exe is
running in a virtual
machine, in a
cloud, or in any

 Only 16 bit confidentiality if
the adversary is able to roll
back the physical table files
without detection. There is a
0.5 risk of complete loss of

NexusDB Pty Ltd NexusDB Security Pack Introduction Page 9 of 17

physical storage has to be
provided using external means.

restoration).

 256 bit confidentiality in case of a
sudden detectable security breach
(e.g. theft of hardware), even if the
attacker at the same time gets
access to multiple historical versions
of the same table files (e.g. file
system backups).

 128 bit authentication of stored data
when recovering from a sudden
detected security breach. (I.e. ability
to detect if an already detected
intruder planted unauthentic table
blocks in the table files.)

 128 bit integrity of stored data when
recovering from a sudden detected
security breach, provided that a nxdb
live backup is used for restoration. If
file system backups are used the
intruder might substitute different
historical versions of the same table
blocks without detection.

other scenario
where backup and
restoration might
happen
transparently.

confidentiality of at least
two table blocks after
2

16
table block re-encodings.

 Only certified for write-once
backups, but might be used
for other purposes if
extra care is taken.

AES CCM 256

Professional

 nxserver.exe must always
work against the latest version of
each table file. Live backups from
older versions of a table file are
permitted. Some integrity of the
physical storage has to be
provided using external means.

A nxserver.exe running on a machine
with a RAID drive or one that might take
file system backups of the table
files (although not use them for
restoration).

 256 bit confidentiality in case of a
sudden detectable security breach
(e.g. theft of hardware), even if the
attacker at the same time gets
access to multiple historical versions
of the same table files (e.g. file
system backups).

 128 bit authentication of stored data
when recovering from a sudden
detected security breach. (I.e. ability

Live backup - write
once

 Do not use if
nxserver.exe is
running in a virtual
machine, in a
cloud, or in any
other scenario
where backup and
restoration might
happen
transparently.

 Only 20 bit confidentiality if
the adversary is able to roll
back the physical table files
without detection. There is a
0.5 risk of complete loss of
confidentiality of at least
two table blocks after
2

20
table block re-encodings.

 Only certified for write-once
backups, but might be used
for other purposes if
extra care is taken.

NexusDB Pty Ltd NexusDB Security Pack Introduction Page 10 of 17

to detect if an already detected
intruder planted unauthentic table
blocks in the table files.)

 128 bit integrity of stored data when
recovering from a sudden detected
security breach, provided that a nxdb
live backup is used for restoration. If
file system backups are used the
intruder might substitute different
historical versions of the same table
blocks without detection.

XCB AES 256

Professional

 Any security breach must be
detected using external means.
Use other software for malware
detection and for preventing
intrusion.

 Live backups must be stored
securely.

Secure systems with explicit intrusion
detection but not disk level encryption,
or secure systems with or without disk
level encryption that grant read access to
not completely trusted entities, or a PC
or laptop with NTFS.

 256 bit confidentiality in case of a
sudden detectable security breach
(e.g. theft of hardware).

Disk encryption
for confientiality
in case of a
sudden detectable
security breach
(e.g. theft of
hardware)

 Do not use if there
is any chance that
an adversary might
modify a table file
the nxserver.exe
has to use.

 No integrity check or
authentication.

XCB AES 256
(Redundancy)

Professional

 Some integrity of the physical
storage has to be provided using
external means.

Secure systems with explicit intrusion
detection but not disk level encryption,
or secure systems with or without disk
level encryption that grant read access to
not completely trusted entities, or a PC
or laptop with NTFS.

 256 bit confidentiality in case of a
sudden detectable security breach
(e.g. theft of hardware).

 256 bit confidentiality for individual
table blocks.

Disk encryption
for confientiality
in case of a
sudden detectable
security breach
(e.g. theft of
hardware)

 Table checksum prevents
replay attacks, provided that
the system tables are stored
securely.

SHACAL CBC HMAC 256

Professional

 Some integrity of the physical
storage has to be provided using

Secure systems with explicit intrusion
detection but not disk level encryption,
or secure systems with or without disk

 A 256 bit block size means
that there is less than 2

-

152
chance of a state collision

NexusDB Pty Ltd NexusDB Security Pack Introduction Page 11 of 17

external means. level encryption that grant read access to
not completely trusted entities, or a PC
or laptop with NTFS.

 256 bit confidentiality in case of a
sudden detectable security breach
(e.g. theft of hardware).

 256 bit confidentiality for individual
table blocks.

in CBC if the largest table
block size is used and the
maximum amount of table
blocks are encoded. If
historical data is available,
there has to be 2

24
versions

available of such maxized
tables before the chance of a
collision reaches 2

-128
.

 Table checksum prevents
replay attacks, provided that
the system tables are stored
securely.

AES CBC MAC 128 Prevent modification of non-
confidential data.

 Integrity and authentication
only - not a confidentiality
mode.

NexusDB Pty Ltd NexusDB Security Pack Introduction Page 12 of 17

Usage

Cryptography has to do with risk management, but in several respects very differently from how financial
risks are managed. It is important to fully understand the difference before deciding on whether certain
security measures are necessary.

Illustration 1

Suppose you have locked yourself out of your house. It's winter and you stand outside freezing, ill dressed
with no mobile phone and - obviously - no keys. You are determined to get inside, fast. Do you stare at the
lock of your front door and give up? No, you go around back and search for a way in and won't give up until
you have found one.

When dealing with cryptography it is beneficial to picture the adversary as yourself, locked outside and
trying to get in. The most common mistake done by developers is to think that it is "unlikely" that the
attacker would attempt to get in one way but not another. Just like you in the example wouldn't stop until
you're safe inside, the attacker won't stop just because the most obvious way in happens to be closed.

Does that mean it is wrong to even try to assess the risk your home will be burglarized? Should all
residential areas look like Fort Knox and all houses have state of the art security systems? Obviously, no.
Economics does play a role in security.

 Firstly, most people are not concerned about burglars who would target their home specifically.
Similarily, some computer attacks follow the same logic, such as attackers who spread malware and
get enough credit card information and trojan infested zombie computers that way, without having
to invest time and effort in trying to take over every single computer on Earth.

 Secondly, it takes time to break in somewhere, and the longer it takes the higher the risk
(chance) of detection. This doesn't necessarily apply to computer security, or at least not in the
same way. While a burglar has a physical appearance that can both be detected visually and have to
move in space time to get where it is heading, the electronic signature of a hacker is a lot more
elusive. It might be sufficient to impede the burglar. It might not be as effective to slow down a
hacker. Does your computer system have multiple layers of security that would require a dedicated
hacker to work his way maually past each obstacle? Are your users capable of detecting if
something is terribly wrong, rather than just wrong in the way there almost always seems to be
something wrong with any computer? If yes, the analogy holds, if not, it doesn't.

Any risk analysis accounts for probabilities. The proper way to do it is as follows (assuming you are familiar
with decision theory and second order predicate calculus):

 Let Adversaries be the set of entities identified by properties that are relevant to the success of
breaking security measures, such as resources, connections, skills. For each x inAdversaries ,
let PAx be the probability that x is an adversary to your system. This probability accounts for the risk
that someone with the resources of x would have the motivation to attack your system. The sum of
all PAx is greater than or equal to zero and might be greater than one (i.e. it might be probable that
you have multiple adversaries).

 Let Roles be the set of relevant roles an entity might assume while attacking your system. Such
roles typically include external hacker, employee, service provider or employee of service provider,
burglar, etc. For each x in Adversaries and each R in Roles , let PRx|Ax be the probability
that x assumes R while attacking your system given that x is an adversary. This probability accounts
for the possibility that the probability that the adversary would assume a certain role might depend
on whether he has motivation to attack you (infiltration). More specifically, the probability also

NexusDB Pty Ltd NexusDB Security Pack Introduction Page 13 of 17

accounts for security measures over which you have limited control, such as your service providers
subjecting new employees to screening, how effective your physical security measures are against
burglars, etc. The probability that someone with properties x will attack your system in the form
of R equals the product PAx PRx|Ax .

 Let Scenarios be the set of all relevant cryptographic attack scenarios. For
each C in Scenario , R in Roles and x in Adversaries , the proposition CRx|Ax which expresses
that x will put himself in scenario C if he is an adversary and assumes role R , will be either true or
false, i.e. the probability is either 0 or 1 - if they can get in one way, they will attempt to get in that
way. This doesn't mean that you either will or will not be subject to a C kind of attack, but
that x either will or will not perform a C kind of attack given that he is an adversary and manages to
assume role R .

 For each C in Scenario , let UC be the utility of being subject to an attack in C , given that such an
attack takes place. Positive utility means benefit, negative utility means damage. Each Chas to be
sufficiently well defined for UC to be independent of which x is conducting the attack.

 For each C in Scenario , let M(C) be the security measures that prevent an attack in C , and
let UC|M(C) be the utility of preventing an attack in C , including what you pay the cryptographer, for
the cryptographic software and/or hardware, performance degradation etc.

 For each C in Scenario , R in Roles and x in Adversaries , the proposition CRx&M(C)|Ax is false if CRx|Ax is
false and true only if M(C) does not prevent an attack in C with cryptographic security bounds.

If ∑x∈Adversaries ∑R∈Roles PRx|Ax (∑C∈Scenarios UC CRx|Ax) ≤ ∑C∈Scenarios UC|M(C) +
∑x∈Adversaries ∑R∈Roles PRx|Ax (∑C∈Scenarios UC CRx&M(C)|Ax) , then your decision set M(C) is adequate. The first term of
the right hand expression signifies that you will pay for the security measures regardless of if an attack
actually takes place. Both the left hand expression and right hand expression will normally be negative.

This analysis becomes slightly more complex if you are developing off-the-shelf software, rather than in-
house software to be deployed at a single location. The probablities, utilities and propositions might be
different for different customers. Your damages in case of a security breach are not necessarily equal to
those of your customer, UC|M(C) might entail no cost and no damages for some customer but not others,
etc. Another question is whether you accept the risk that some customer might be subject to some attacks
(that would be too costly to try to prevent generally) or rather recommend them not to use your software
and loose a sale.

Key management

The purpose of cryptography is to provide security services that prevent unauthorized entities from gaining
access to your data in certain ways. To that end, cryptography relies mainly on two things:

 The security of certain cryptographic primitives or building blocks, such as ciphers, hashes and
schemes that combine such primitives in certain ways.

 Correct usage, in particular proper management of the cryptographic keys for any key dependent
schemes that are used.

The internal key management of the NexusDB encryption engines are implemented using a chain of key
derivation functions and key encryption functions. It is not possible to gain access to the key or
keys that are used for the cryptographic primitives that are applied directly to the table data, without
direct or indirect access to the table password that unlocks the table. For instance, it is possible to gain
access to all of the actual keys, from the table password down to the cipher round keys, if you debug your
NexusDB server while the password is entered, either by yourself or by an authorized client user who is
trusted with the password and connects to the server while you are debugging it. Deriving the keys without

NexusDB Pty Ltd NexusDB Security Pack Introduction Page 14 of 17

access to anything but a single, static image of the table cipher text, is however as hard as breaking the
primitives using crypto-analysis.

Note 1

Cryptographic security can only be guaranteed to the extent that it is assumed that any entity with access
to the process of the NexusDB server also has full access to all passwords and keys. Having access to the
process implies full access. If you run the executable on a computer you control, you have access to the
process.

The encryption engines protect the physical tables files that are stored on disk. Cryptographic security
might be required - and achieved - in the event an adversary gains access to the table files without getting
access to the NexusDB server process (or the passwords and keys in some other way). This might
realistically happen in at least three scenarios:

1. The device (e.g. server computer) where the database is stored, is stolen. If the server computer is
seized while the NexusDB server is still running, the hardware and operating system must at least
prevent unauthorized access until the server is shut down and the RAM is cleared. If the adversary
starts the server, the NexusDB process will not be able to automatically unlock the tables, or,
alternatively, the adversary will neither be able to modify the system that is started automatically
when the server is turned on, nor break the disk encryption of the partition where it is stored.
Authorized clients will be notified immediately using auxilliary means and will not connect to
provide the required passwords.

2. The database is stored with less exclusive privileges than the privileges under which the NexusDB
server process is running. Some user who has system privileges that allow him to access the
database storage location might not be authorized to access all table passwords.

3. The live backup of the database is stored with less exclusive privileges, e.g. on a network access
server or on an online backup service.

Note 2

Use encryption engines when there is a possibility that an adversary might get access to the physical tables
files, but you are able to rule out that the same adversary will also get access to the corresponding keys
and passwords. Using an encryption engine will protect the confidentiality of the data in the tables, or the
integrity of the data, or both.

Cryptographic security ultimately depends on the secrecy of the key. If you use the encryption engines for
protecting your data under a certain attack scenario, it is essential that the keys and passwords are
managed in such way that they will remain secret even under that particular scenario. This might be
diffcult in practice, which makes it important to make sure architecture, deployment and security match,
and account for this as early as possible during the development cycle. Some key questions are:

 Why? What is the end of the security measures? Does the application author want to make it easier
for users to call support than fix issues by themselves? Does the application author want the users
to rest assured that their data will remain confidental despite the way the application happens to
be deployed?

 What? Should the contents remain confidential? Authentic? Should the structure remain
confidential or authentic?

 By whom? Who is responsible for ensuring that the security requirements are met? The client user
or client site administrator? The server administrator? The application author?

 From whom? Who is the potential adversary? The client user? The ISP?

NexusDB Pty Ltd NexusDB Security Pack Introduction Page 15 of 17

 On whose behalf? Who has an interest in ensuring security, and what exactly does he stand to
loose? If you have an interest in certain security, you should be given both the opportunity and the
responsibility to ensure that security, and hence you should be in charge of the key management
for that particular security aspect.

Entity/Role Description

Database storage
device

The exact location where the database files are stored, defined by potential access
points. In an environment with tight security it might be the logical file directory. In
other environments it might be the entire universe.

Database files The physical table files etc.

Database storage
device user

People with access to the database storage device, and hence the database files.

Database content
The logical contents of the database, as seen by an application with full access to the
database.

Database structure The logical structure of the database, e.g. table names, table structures.

Database structure
author

The person or persons responsible for designing the database structure.

Database admin
user

People with access to the database administration interface, and hence the right to
determine the rights of database write users and database read users.

Database write
user

People with write access to the database content.

Database read user People with read access to the database content.

Table password The key material used for protecting the table contents and table structure.

Database user
password

The key material sent to the database server for granting access to tables in a
database. If the table passwords are managed by a security monitor, this is the client
login to the server, otherwise it is the list of table passwords.

Server device The location where the server application is stored and executed.

Server device user People with access to the server device.

Server application

The application that accesses the database and publishes it for client access. There
might be multiple tiers of server applications. In such case the back end server access
the database, and the front end server listens for client connections. Each server
application might be considered to run on a separate device.

Server application
author

The person or persons responsible for the server application implementation.

Client device The location where the client application is stored and executed.

Client device user People with access to the client device.

Client application

The application that displays the data in human readable form, and possibly allows
modifications. In the case of stand alone desktop applications with an embedded
server engine, the client application might be identical to the server application. In the
case of clients that connect to a remote server application, there might be different
client applications for different tasks.

Client application
user

People who interact with the client application.

NexusDB Pty Ltd NexusDB Security Pack Introduction Page 16 of 17

Scenario Usage Examples

Example 1 - Not completely trusted database device user

The server device is a reasonably secure co-located server computer. The end is to protect the
confidentiality and authenticity of the data the client users store on the server. The ISP in charge of the co-
location service might, hypothetically, at any time shut down the server, insert a boot CD, and get full
access to whatever is stored on disk. The scenario might be such that it is feasible to modify data files this
way, but infeasible to install or replace executables, without the operating system detecting it on next
normal reboot.(* An encryption engine with both confidentiality and integrity should be used, and
preferably one which is less vulnerable to historical attacks, such as XCB-AES-256 (Red) or SHACAL-CBC-
HMAC-256. The database user passwords are stored client side (or memorized by the client users) and only
sent to the server over a transport with both confidentiality and authentication. Note that the answers to
the questions "by whom" and "on whose behalf" coincide.

*) For instance, the key used for encrypting the partition with the Windows and Program Files directories is
stored in a tamper resistant hardware device, but Inetpub and other data directories are either
unencrypted or can be accessed by the ISP for other practical reasons (e.g. backup services). In other
words, the server device does not completely coincide with the database device; the former is secured but
the latter is not. Be careful not to assume anything without reason. It is not hard to install or modify
executables this way per se .

Example 2 - Not completely trusted backup device

The server device is a reasonably secure co-located server computer. The entire disk is encrypted, but the
ISP in charge of co-location provides a backup service that is only partially trusted. Use a fast encryption
engine with confidentiality and integrity, such as AES-CCM-128, AES-CCM-256 or AES-GCM-256, to protect
the live backup of the database. For reliability, a second backup is stored elsewhere, in case the ISP
managed backup is corrupted and rejected by the encryption engine on restoration.

Example 3 - Stolen or misplaced server side database device

The database device is a reasonably secure co-located server computer. The ISP in charge of co-location is
completely trusted for normal operations, but there is a risk the database device will fall into the wrong
hands after end-of-life.(* Use any appropriate encryption engine with confidentiality, except AES-GCM-256.
The database user password is stored client side.

*) For instance, it is stolen, not completely wiped clean after being replaced as part of normal maintenance,
etc.

Example 4 - Not completely trusted database device user

Other threat scenarios are plausible in case of a setup like the one in example 1 with a disjoint server
device and database device. For instance, the author of the server application front end might be an
external developer without access privileges to the database contents. Use XCB-AES-256 (Red) or SHACAL-
CBC-HMAC-256 if there are practical reasons to grant this developer database device user privileges.

NexusDB Pty Ltd NexusDB Security Pack Introduction Page 17 of 17

Example 5 - Stolen or misplaced client side database device

The advice of example 3 applies also to stand-alone desktop applications where the server device,
database device and client device coincide. One significant difference is however that in such a scenario
there is no external device where the database user password might be stored safely, so the user should
memorize it and enter it manually on each run of the application. DO NOT use the same password you use
for anything else (period), unless you are confident the password is not stored anywhere, or is stored
securely even under this threat scenario. Usually you are not.

Example 6 - Customers who are unable to let things alone

You are the author of the database and the server application. You want to ensure that the database is
only accessed through your application, and, for instance, that the customer does not download EM and
modify the data or the structure directly. One reason might be that you do not want them to turn to you
for support after they have done so, because they will not admit they have tried to fix things for
themselves and you will have to spend hours trying to figure out what has gone wrong.

The right way, from a cryptographic point of view, to achieve this end is for you to host both the server and
the database, and thereby physically prevent the users from any unauthorized access to the database files.
If this is not an option (e.g. because your customers would have reliability concerns or security concerns
with such a solution), and the server device and database device has to be a multi purpose computer
system the customer controls exclusively, there is no cryptographically sound solution to the problem. You
might however use the AES-CBC-MAC-128 encryption engine with a hard coded table password to
obfuscate access to the database. There are no guarantees the customer will not eventually figure out how
to extract the password, but it might help reduce the overall problem.

